在Keras的Embedding层中使用预训练的word2vec词向量

本文的部分工作、代码、数据共享到gethub网站《使用多层级注意力机制和keras实现问题分类》:https://github.com/xqtbox/question-classification-with-multi-level-attention-mechanism-and-keras

1 准备工作

1.1 什么是词向量?

”词向量”(词嵌入)是将一类将词的语义映射到向量空间中去的自然语言处理技术。即将一个词用特定的向量来表示,向量之间的距离(例如,任意两个向量之间的L2范式距离或更常用的余弦距离)一定程度上表征了的词之间的语义关系。由这些向量形成的几何空间被称为一个嵌入空间。

Keras1基础知识与安装.md

image

[toc]

Keras:1 基础知识与安装

1.1 为什么学习keras

1.1.1 keras的优点

如果说 Tensorflow 或者 Theano 神经网络方面的巨人. 那 Keras 就是站在巨人肩膀上的人. Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×